2 resultados para Disease resistance

em Dalarna University College Electronic Archive


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cathepsin S is a protease important in major histocompatibility complex (MHC) class II antigen presentation and also in degrading the extracellular matrix. Studies, most of them experimental, have shown that cathepsin S is involved in different pathological conditions such as obesity, inflammation, atherosclerosis, diabetes, and cancer.    The overall hypothesis of this report is that high levels of circulating cathepsin S, is a biomarker that reflects pathology induced by inflammation and obesity. The overall aim of this report was to investigate possible associations between circulating cathepsin S, inflammation, glucometabolic disturbance, and its associated diseases in the community. As cathepsin S appears to be a novel risk marker for several pathological conditions, we also wanted to examine the effect of dietary intervention on circulating cathepsin S concentrations.    This thesis is based on data from three community-based cohorts, the Uppsala longitudinal study of adult men (ULSAM), the prospective investigation of the vasculature in Uppsala seniors (PIVUS), and a post-hoc study from the randomized controlled NORDIET trial.    In the first study, we identified a cross-sectional positive association between serum cathepsin S and two markers of cytokine-mediated inflammation, CRP and IL-6. These associations were similar in non-obese individuals. In longitudinal analyses, higher cathepsin S at baseline was associated with higher CRP and IL-6 levels after six years of follow-up. In the second study, we identified a cross-sectional association between increased serum levels of cathepsin S and reduced insulin sensitivity. These associations were similar in non-obese individuals. No significant association was observed between cathepsin S and insulin secretion. In longitudinal analysis, higher cathepsin S levels were associated with an increased risk of developing diabetes during the six-year follow-up. In the third study, we found that higher serum levels of cathepsin S were associated with increased mortality risk. Moreover, in the ULSAM cohort, serum cathepsin S was independently associated with cause-specific mortality from cardiovascular disease and cancer. In the fourth study, we identified that adherence to an ad libitum healthy Nordic diet for 6 weeks slightly decreased the levels of plasma cathepsin S in normal or marginally overweight individuals, relative to the control group. Changes in circulating cathepsin S concentrations were correlated with changes in body weight, LDL-C, and total cholesterol.    Conclusion: This thesis shows that circulating cathepsin S is a biomarker that independently reflects inflammation, insulin resistance, the risk of developing diabetes, and mortality risk. Furthermore, a Nordic diet moderately reduced cathepsin S levels in normal-weight and overweight men and women. This effect may be partially mediated by diet-induced weight loss and possibly by reduced LDL-C concentrations. 

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Insulin resistance (IR) and impaired insulin secretion contribute to type 2 diabetes and cardiovascular disease. Both are associated with changes in the circulating metabolome, but causal directions have been difficult to disentangle. We combined untargeted plasma metabolomics by liquid chromatography/mass spectrometry in three non-diabetic cohorts with Mendelian Randomization (MR) analysis to obtain new insights into early metabolic alterations in IR and impaired insulin secretion. In up to 910 elderly men we found associations of 52 metabolites with hyperinsulinemic-euglycemic clamp-measured IR and/or β-cell responsiveness (disposition index) during an oral glucose tolerance test. These implicated bile acid, glycerophospholipid and caffeine metabolism for IR and fatty acid biosynthesis for impaired insulin secretion. In MR analysis in two separate cohorts (n = 2,613) followed by replication in three independent studies profiled on different metabolomics platforms (n = 7,824 / 8,961 / 8,330), we discovered and replicated causal effects of IR on lower levels of palmitoleic acid and oleic acid. A trend for a causal effect of IR on higher levels of tyrosine reached significance only in meta-analysis. In one of the largest studies combining "gold standard" measures for insulin responsiveness with non-targeted metabolomics, we found distinct metabolic profiles related to IR or impaired insulin secretion. We speculate that the causal effects on monounsaturated fatty acid levels could explain parts of the raised cardiovascular disease risk in IR that is independent of diabetes development.